An Introduction to Phage Whole-Genome Sequencing and Annotation

Jason J. Gill

Department of Animal Science Center for Phage Technology Texas A&M University

"Phage genomics"

- Not a narrowly-defined topic!
 - Whole-phage genome sequencing
 - Targeted phage metagenome sequencing
 - Metagenomics of viral consortia
 - Prophage mining/annotation

Whole phage genome sequencing and annotation

- Phages can usually be mixed into a single index or pool if they are not similar to each other
 - Different hosts
 - Different morphotypes

Shotgun sequencing

Sequencing technology summary

Technology	Read length	Quality*	Total yield	Cost per base
Pyrosequencing (Ion Torrent)	400 – 600 bp	Moderate	Moderate	Moderate
Illumina	50 – 350 bp	High	High	Low
PacBio	2 – 20 kbp	Moderate	Moderate	Moderate
Nanopore	> 100 kbp ?	Low	Low-moderate	Moderate

^{*} Can vary as sequencing chemistries and software improve

Overlap-layout-consensus (OLC) assembly

- The "classic" method of assembly
 - Used for assembling long-read data (e.g., Sanger, PacBio and Oxford Nanopore reads)
- Reads can be of any length and can be non-uniform
- All sequence reads are compared pairwise to each other to find matches that meet a given threshold
 - N(N-1)/2 pairwise comparisons required for a set of N reads
- Higher tolerance of errors
- Assembly can be manually reviewed

CTGTTACTGTCTATCGATAGACGATATATGACTATGGACTAGATTC

CTGTTACTGTCTATCG
TCTATCGATA
ATAGACGATATAT
ATATGACTATG
ACTATGGACTAGATTC

Overlap consensus: number of reads vs. number of pairwise comparisons

de Bruijn graph assembly

- All reads are split into sequences of a defined length, called a k-mer
- Identical k-mers are collapsed into a single k-mer, reducing computational requirements
 - Redundant k-mers are discarded
 - All remaining k-mers are unique
- k-mers can only be linked in the assembly if they are *identical* and offset by *one position*
- The entire genome can only be assembled if this chain of singleoffset k-mers is unbroken
- Assumptions for complete assembly:
 - All k-mers in the genome are contained in the read set
 - All k-mers are error-free
 - Each k-mer appears only once in the genome

k-mer generation

ATTCCTATCTGTACTGTTACTGTCTATCGATAGACGATATATGACTATGGACTAGATTC

• In practice, *k*-mers of 21 to >100 are used for assembly of phage genomes

Assembly algorithms overview

Overlap-layoutconsensus (OLC)

- Searches for overlaps in allagainst-all pairwise comparisons
- Computationally more intensive
- More tolerant of low quality data
- More suited to long-read, low-coverage assemblies
- A more intuitive process

De Bruijn graph (DBG)

- Splits reads into k-mers and assembles based on De Bruijn graphs (links overlapping k-mers shifted by one position at a time)
- Computationally more efficient at high coverage depth (identical k-mers are merged)
- Less tolerant of low quality data (errors force k-mers to remain separate)
- Better for short-read, highcoverage assemblies

Assembly programs

- Overlap-layoutconsensus (OLC)
 - Phrap
 - Celera
 - Newbler (454)
 - Phusion
 - Allora (PacBio)
 - Sequencher

- De Bruijn graph (DBG)
 - Euler
 - ABySS
 - Velvet
 - SOAPdenovo
 - SPAdes
 - CLC bio Genomics

Phage DNA packaging strategies

Determining your phage termini

- gDNA with short 5' or 3' overhangs
- Assembly may or may not have cos termini at the end of the contig
- Genome should be opened at cos ends

- Genome has no fixed or "true" termini
 - Genome is reopened to convention (e.g., between *rIIAB* for T4-like phages)

- Terminal repeats are collapsed in the middle of the contig
- Must be determined bioinformatically or experimentally

Assembly of repeat regions

GTACTGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT

```
TCTATAGGGACT
GACTCTAGAT
GATTCACGGTA
TCACGGTACTG
ACTGTTACT
TACTGTTAC
GTACTGTT
CTGTTACT
ACTGTTA
TTACTGTTA
TTACTGTCT
CTGTCTATCGA
CGATTCCTATCGA
TATCTATAGGGA
```


High coverage region

Terminal repeat boundaries

 Terminal repeats in phage genomes like T7 or T5 may be detectable by analyzing sequence coverage

- PhageTerm is available to automate this analysis and find genomic termini
 - http://www.biorxiv.org/content/early/2017/02/15/108100

Genome annotation workflows

- Environmental / Metagenomic
 - Identification of genes/proteins/pathways from metagenomic assembly
 - Individual phages often not cultured
 - Often emphasis on relationships, distribution, ecology
- Whole genome
 - Annotation of individual complete, closed genomes
 - Often emphasis on presence of toxins/virulence determinants, determination of phage lifestyle
 - Basis for taxonomy, future genetic or molecular biology experiments

Genome annotation

Structural annotation tools

- For protein-coding genes
 - GeneMark
 - http://exon.gatech.edu/GeneMark/
 - MetaGeneAnnotator
 - http://metagene.cb.k.u-tokyo.ac.jp/
 - Glimmer3
 - http://ccb.jhu.edu/software/glimmer/index.shtml
 - Prodigal
 - http://prodigal.ornl.gov/server.html
- For non-coding features
 - tRNAScan
 - http://lowelab.ucsc.edu/tRNAscan-SE/
 - ARAGORN
 - http://mbio-serv2.mbioekol.lu.se/ARAGORN/
 - TransTermHP
 - http://transterm.cbcb.umd.edu/

Eukaryotic gene

- Extensive mRNA processing for intron splicing, 5' and 3' modification
- Difficult to infer protein sequence directly from DNA sequence

Prokaryotic gene

- Introns rare, little mRNA processing
- Easy to infer protein sequence directly from DNA sequence

Protein-coding genes

- DNA consists of two complementary strands with three possible reading frames for each, six reading frames total
- Just by looking at the DNA sequence, it is not obvious which strand and reading frame encodes a protein
- A gene must be an ORF, but not any ORF can be a gene!

Gene prediction tools

- In addition to a start, RBS and stop codon, a gene encodes biologically meaningful information, which means its DNA sequence is **not random**
- Gene prediction tools use this fact to locate probable coding sequences
 - GC content of the 3rd codon position reflects genomic GC content
 - Frequency and distribution of dinucleotide pairs
 - Periodicity of Fourier-transformed DNA sequence
 - Hidden Markov Models
 - Codon usage bias compared to organism as a whole
- We use two programs for predicting phage genes,
 MetaGeneAnnotator (MGA) and Glimmer3
- These tools are generally accurate (> 90%) but still need some manual curation of the output

Gene prediction and translation initiation

- Presumably, all protein-coding genes must be translated into protein from an mRNA, which requires initiation
- A Translation Initiation Site (TIR) consists of a Shine-Dalgarno (S-D) sequence, a 4-12 bp spacer, and a start codon
 - The S-D sequence must base-pair with the complementary sequence at the 3' end of the 16S rRNA to initiate translation of a protein
- The strength of translation initiation is affected by how close a gene's RBS is to the consensus S-D sequence <u>AGGAGGT</u>
- Any 3-base subset of the canonical S-D can be used in a TIR
 - Must have appropriate spacing
 - Wobble base-pairing rules apply

Valid Shine-Dalgarno sequences					
Watson-Crick	Wobble (G-U)				
AGGAGGT	AGGAGGT				
AGGAGG	GGGGGG				
GGAGGT	GGGGGT				
AGGAG	AGGGG				
GGAGG	GGGGG				
GAGGT	GGGGT				
AGGA	GGGA				
GGAG	GGGG				
GAGG	GGGT				
AGGT	GGG				
AGG					
GGA					
GAG					
GGT					

Basic gene structure

- A protein-coding gene must:
 - Have a translational start signal upstream of a valid start codon (ATG, GTG, TTG)
 - Encode a protein in an open reading frame (ORF)
 determined by the start codon (also called the
 coding segment, or CDS)
 - Be terminated by a stop codon

AGT**AGGT**ACCTGATT**ATG**CAGCATGTG...TCGGAT**TAA**GCTT

MRHV SD*

I mage recomology

Coding density and organization

Density

- Most phages have coding densities of >90%
- Most of the DNA contains some kind of feature: protein coding gene, tRNA, terminator, regulatory element, etc.
- These features are tightly packed and may even overlap if biologically possible

Transcriptional units

- Phage genes are translated from polycistronic mRNA's
- Genes tend to be arranged in groups on the plus or minus strand

General gene finding rules for phage

- Phages have high coding density
 - Genes tend to have minimal gaps between them or overlap slightly (up to ~5-8 aa)
 - Genes should never be embedded in each other on opposite strands
- Genes tend to be arranged into transcriptional units: blocks of genes on one strand or the other
- Start codons: ATG > GTG >> TTG
- Have recognizable translation initiation sites, but only a few will have the full consensus S-D sequence AGGAGGT
- Most genes will encode proteins > 30 aa
- Sometimes there is no good-looking gene for a given DNA region and that is OK
 - There may be a regulatory element or some other function for that sequence

BLAST: Basic Local Alignment Search Tool

- The database used will determine the scope of your search
- There are many databases available to be searched by BLAST
 - nr (non-redundant database): the default at NCBI, contains all unique deposited sequences
 - SwissProt: Manually curated protein dataset from EMBL
 - TrEMBL: Electronically inferred annotations from SwissProt
 - UniRef: Clusters of homologous proteins in UniProt
 - FigFams, COGs, POGs, ARDB, mVirDB, etc.

BLAST of T4 E vs. the nr database

- In theory an E value < 1 is significant
- In practice, E values of < 1e-3 or 1e-5 are considered relevant, if they cover most or all of the protein

T4 vs. RB14, E = 9e-115

- 1 MNIFEMLRIDERLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNCNGVITK 60 MNIFEMLRIDE LRLKIYKDTEGYYTIGIGHLLTKSPSLN AKSELDKAIGRNCNGVITK
- 1 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNVAKSELDKAIGRNCNGVITK 60

T4 vs. Phi92, E = 8e-52

- 1 MNIFEMLRIDERLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNCNGVITK 60 +++F+MLR DE L+L +Y DTEGY+T+GIGHLLTK A LD +GR NGVIT+
- 5 VDVFDMLRFDEGLKLTVYPDTEGYWTVGIGHLLTKLKDKAEAIRILDNLVGRKTNGVITE 64

T4 vs. *C. concisus*, **E = 7e-08**

- 1 MNIFEMLRIDERLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNCNGVITK 60 M++ E ++ +E + IY+DT GY TIG G ++ + +K EL NG +
- 1 MSLKENIKENEGFKSHIYQDTRGYPTIGYGFKVS----SLSKDEL-----FLNGGKVE 49

Partial protein similarity can lead to misleading results

- Two different proteins can share a region of similarity if they share a functional domain
- E.g., both proteins may hydrolyze ATP but otherwise have different functions
- BLAST E-value can be misleading if a there is a good match over part of a protein

WP numbers

- To save database space and improve speed, identical protein sequences are now collapsed into a single record with a WP_ accession number
- A single representative record is chosen to be the "face" of the group
- The record chosen is not necessarily the most informative, and may not be the one you're looking for!

DNA recombination and repair protein; ssDNA-dependent ATPase; synaptase; ssDNA and dsDNA binding protein; ATP-dependent homologous DNA strand exchanger; recombinase A; LexA autocleavage cofactor [Escherichia coli str. K-12 substr. MG16551

Source	CDS Region in Nucleotide	Protein	Name	Organism	Strain	Superk
RefSeq	NC_000913.3:2822708-2823769 (-)	WP_000963143.1	MULTISPECIES: protein RecA [Enterobacteriaceae]	Escherichia coli str. K-12 substr. MG1655	K-12	Bacteria
RefSeq	NC_002695.1:3546635-3547696 (-)	WP_000963143.1	MULTISPECIES: protein RecA [Enterobacteriaceae]	Escherichia coli O157:H7 str. Sakai	Sakai	Bacteria
RefSeq	NC_004337.2:2796381-2797442 (-)	WP_000963143.1	MULTISPECIES: protein RecA [Enterobacteriaceae]	Shigella flexneri 2a str. 301	301	Bacteria
RefSeq	NC_004431.1:3105176-3106237 (-)	WP_000963143.1	MULTISPECIES:	Escherichia coli	CFT073	Bacteria

BioSample: SAMN02604091

DNA recombination and repair protein; ssDNA-dependent ATPase; synaptase; ssDNA and dsDNA binding protein; ATP-dependent homologous DNA strand exchanger; recombinase A; LexA autocleavage cofactor [Escherichia coli str. K-12 substr. MG16551

NCBI Reference Sequence: NP 417179.1 GenPept FASTA Graphics

RefSeq Selected Product: WP_000963143.1, 353 amino acids Name: MULTISPECIES: protein RecA [Enterobacteriaceae]

Conserved domain searches

- Many proteins are organized into functional domains, each of which contributes to the protein's function
 - Ligand binding domains
 - Enzymatic active sites
 - Cofactor binding sites
 - Structural components
 - Etc.
 - Some have argued that the **domain** is the smallest meaningful biological unit, rather than the gene
- Domains can be reshuffled to form proteins with new functions

Conserved domain searches

- Exact methods vary, but these tools search your query sequence against models of functional domains rather than individual sequences as in BLAST
 - NCBI Conserved Domain Database (CD-Search): Includes
 NCBI data and 5 external databases
 - Fast, allows batch searches online
 - EMBL InterProScan: Integrates 14 member databases into a unified system of functional domains
 - Slow, online search allows 1 sequence at a time
 - HHpred (Tuebingen MPI): Very sensitive dynamic searches of models against models
 - Slow, 1 sequence at a time, output can be difficult to interpret

Genome annotation tools

Fully automated annotation

- RAST/myRAST
 - http://rast.nmpdr.org/
- Prokka
 - http://www.vicbioinformatics.com/software.prokka.shtml
- NCBI Prokaryotic Pipeline
 - https://www.ncbi.nlm.nih.gov/genome/annotation_prok/

Semi-automated annotation

- DNA Master
 - http://cobamide2.bio.pitt.edu/
- CPT Galaxy/Apollo
 - https://cpt.tamu.edu/galaxy-pub/

Manual annotation / genome editors

- Sanger Artemis
 - http://www.sanger.ac.uk/science/tools/artemis
- Broad Argo
 - https://archive.broadinstitute.org/annotation/argo/

