An Introduction to the CPT Galaxy and WebApollo for Phage Whole Genome Annotation

Jason Gill

Department of Animal Science
Center for Phage Technology
Texas A&M University

Genome annotation tools

Fully automated annotation

- RAST/myRAST/RASTtk
 - http://rast.nmpdr.org/
- Prokka
 - http://www.vicbioinformatics.com/software.prokka.shtml
- NCBI Prokaryotic Pipeline
 - https://www.ncbi.nlm.nih.gov/genome/annotation_prok/

Semi-automated annotation

- DNA Master
 - http://cobamide2.bio.pitt.edu/
- CPT Galaxy/Apollo
 - https://cpt.tamu.edu/galaxy-pub/

Manual annotation / genome editors

- Sanger Artemis
 - http://www.sanger.ac.uk/science/tools/artemis
- Broad Argo
 - https://archive.broadinstitute.org/annotation/argo/

What is Galaxy?

- Galaxy is not an analysis tool itself
- Galaxy provides a platform for performing reproducible bioinformatics research
- Provides a Web-browser-based user interface for other command-line tools
- Provides a history of actions performed and tool outputs
- Allows users to chain operations together in workflows to perform complex analyses
- Galaxy is open-source (free) with an active user community

What is Galaxy?

- Galaxy can interface with any Linux command-line program via a short script called a "wrapper"
 - The wrapper presents input options to the user and passes these back to the invoked program (e.g., BLASTp, Glimmer3, etc.)
- Galaxy then keeps a record of that job, its inputs and outputs in a history
- Ultimately, Galaxy offers the power and flexibility of command-line Linux data analysis to the average biologist
- Maintains a record of work you've done, even years later

Why use Galaxy?

Why use Galaxy for phage?

- Galaxy is a popular and well-supported bioinformatic infrastructure
 - >125 Galaxy platforms available worldwide
- Automates tasks, retains inputs and outputs for future reference
- Is customizable for individual use cases, user retains control of the analysis
- Education: Students can see and interpret tool outputs, customize analyses
- Novel or unusual genomes: Analysis using customizable approaches
- Beyond annotation: comparative genomics, mutational analysis, phylogenetics

The Galaxy interface

Left panel: tools

Center panel: analysis and results

Right panel: history

General order of operations

The history

- The history panel contains all input and output data for your analysis
- All input data for tools (sequences, Genbank files, etc.) must be uploaded to the history to be passed through to the tool
- All running jobs will appear in the history in the order they were entered
- All tool output data will appear in the history

The history

- Each item in the history is a dataset and appears in the order it was entered
 - Each item is numbered
 - Numbers can't be changed but names can be edited by the user
- Grey items are queued to run
- Yellow items are running
- Green items are jobs that are completed and ready for viewing, download or input into the next tool
- Red items are jobs that failed or returned an error

The history

- The user can create an unlimited number of new histories to keep track of related analyses
- Datasets can be copied or moved between histories
- Histories can be copied or shared between users

Datasets in the history

- **1. Eyeball** views the dataset in the main panel
- **2. Pencil** modifies metadata: name, data type, etc
- **3. X** sends a dataset to the trash. You can recover deleted datasets (see below)
- **4. Save** downloads the dataset to your hard-drive. You don't *need* to do this, as Galaxy will always have a copy for you
- **5. Information** views details about the tool that was run and how it was configured
- **6. Rerun** is a very commonly used button. This lets you re-run the tool, with the same parameters configured
 - Need to run the same tool with slightly different parameters? Don't waste time filling out the tool form; re-run it and tweak those.
 - Job failed? Try modifying the tool inputs and re-running it.
- **7. Visualize** lets you visualize compatible datasets
- **8.** Tags let you annotate datasets with tags
- **9. Comments** let you comment on a dataset to remind yourself why you did it, or maybe to annotate some interesting results you found in the output

Failed jobs

- Not failures but learning opportunities!
- First: did you use the tool correctly?
 - Correct input file
 - Correct parameters set
- If the tool has truly failed, click the "bug" icon to submit a bug report
- Submitting bug reports will help us improve the service

Analyzing data

Analyzing data

Workflows

- One of Galaxy's most powerful features is the ability to connect jobs in workflows
- Some analyses take a long time; output from one job will automatically be handed off to the next when it finishes

Galaxy training resources

- Galaxy home: https://usegalaxy.org/
- Galaxy 101: https://galaxyproject.org/tutorials/g101/
- CPT Galaxy training: https://cpt.tamu.edu/training-material

Welcome to CPT Galaxy Training

Collection of tutorials for CPT Galaxy users and BICH464 students. Further tutorials developed and maintained by the worldwide Galaxy community are available here.

CPT Galaxy for Students

Торіс	Tutorials
Introduction to Galaxy and Apollo	6
Additional Analyses	5
Phage Annotation Pipeline in CPT Galaxy	4

CPT Galaxy for Scientists

Topic	Tutorials
De Novo Assembly	2

What is WebApollo?

- WebApollo is an interactive genome visualizer that supports collaborative genome annotation
 - An extension of the popular JBrowse genome viewer that allows editing
 - "Google Docs, but for genomes"
- Still in development, Apollo is less robust than Galaxy and new features continue to be added
- Maintains genome annotations and multiple evidence "tracks" to guide annotations
- The CPT has developed tools that bridge Galaxy
 ← → Apollo

JBrowse

- JBrowse is a genome viewer implemented in many online tools (including RAST and PATRIC)
- Viewer only, no editing function
- Apollo is an addition to JBrowse
 - To work with data in Apollo, it is first used to generate a JBrowse instance that is then loaded into Apollo

Annotations in Apollo

- User annotations appear in the topmost track of the display
- Tracks below this are generated by various tools in Galaxy and imported to Apollo

Evidence tracks in Apollo

- Features in Apollo can only be created from evidence tracks
- Unlike purely manual editors like Artemis, the user cannot select sequence and create a feature de novo
- This is part of a philosophical decision by Apollo, that features are only created with evidence

File formats

- File formats are important!
- Sequence analysis is computational, and each program has an expected input and output file format
- Different formats are used by different tools
- A strength of Galaxy is the ability to link analysis and file format conversion in workflows
- Note that most programs that deal with DNA or protein sequence are expecting data in *plain text* (ASCII, UTF8) format

General Feature Format, version 3

```
##qff-version 3
ctg123 . mRNA
                              9000 . + . ID=mrna0001; Name=sonichedgehog
                        1300
                             1500 . + . ID=exon00001; Parent=mrna0001
ctq123 . exon
                        1300
ctg123 . exon
                             1500 . + . ID=exon00002; Parent=mrna0001
                        1050
                        3000 3902 . + . ID=exon00003; Parent=mrna0001
ctq123 . exon
                            5500 . + . ID=exon00004; Parent=mrna0001
ctq123 . exon
                        5000
ctg123 . exon
                        7000
                              9000
                                    . + . ID=exon00005; Parent=mrna0001
```

- GFF3 is becoming a dominant format for storing sequence data
- One line per feature: compact, easier to search, parse, and process
- Can be used to store data other than genome annotations: BLAST alignments, conserved domains, etc.
 - Jbrowse/Apollo natively recognizes features in the GFF3 format
- The DNA sequence can be stored as part of the GFF3 file as a FASTA sequence, or can exist as a separate FASTA file

General Feature Format, version 3

```
##qff-version 3
ctg123 . mRNA
                        1300
                              9000 . + . ID=mrna0001; Name=sonichedgehog
ctq123 . exon
                        1300
                              1500
                                    . + . ID=exon00001; Parent=mrna0001
ctg123 . exon
                        1050
                            1500 . + . ID=exon00002; Parent=mrna0001
                        3000 3902 . + . ID=exon00003; Parent=mrna0001
ctq123 . exon
                        5000 5500 . + . ID=exon00004; Parent=mrna0001
ctq123 . exon
ctq123 . exon
                        7000
                              9000
                                    . + . ID=exon00005; Parent=mrna0001
```

seqid: Name of the DNA sequence the annotation refers to

source: Name of the program that generated the feature

type: Type of feature (gene, exon, CDS, etc.)

General Feature Format, version 3

```
##gff-version 3
ctg123 . mRNA
                         1300
                               9000
                                    . + . ID=mrna0001; Name=sonichedgehog
                                           . ID=exon00001; Parent=mrna0001
ctq123 . exon
                         1300
                               1500
ctg123 . exon
                         1050
                              1500
                                           . ID=exon00002; Parent=mrna0001
                              3902
                                        + . ID=exon00003; Parent=mrna0001
ctq123 . exon
                         3000
ctg123 . exon
                         5000
                               5500
                                              ID=exon00004; Parent=mrna0001
                                              ID=exon00005; Parent=mrna0001
ctq123 . exon
                         7000
                               9000
```

start, end: Coordinates of the start and end of the feature, as base position of the sequence specified by seqid score: Feature score (e.g., Evalue, P value) phase: where the feature begins relative to the reading frame; 0, 1, or 2 base offset. CDS features must have a phase.

strand: Plus (+) or minus (-) DNA strand attributes:

Feature attributes listed as tag=value

parent-child relations: Features are nested in a hierarchy of mRNA>gene>CDS; makes sense for eukaryotic genomes but is largely redundant for bacteria

Galaxy/Apollo order of operations

Different phage strategies for DNA packaging

cos: Complementary overhangs, DNA packaging is site-specific; each packaged DNA molecule is identical and 100% of the genome. Overhangs can be 3' or 5', depending on the phage.

Paradigm phage: λ

pac: DNA molecules are terminally redundant and permuted; each DNA molecule is >100% of the genome and starts and stops at a different location. Packaging can initiate from a specific pac site or randomly, depending on the phage.

Paradigm phage: T4

Terminal repeats (TR): DNA molecules are terminally redundant but not permuted; each DNA molecule is >100% of the genome but starts and stops at the same place (each molecule is identical). TR's can be ~100 bp to >10 kb.

Paradigm phage: T7

Terminal proteins: DNA molecules have a protein covalently linked to the 5' end of each strand. Each packaged DNA molecule is identical and is 100% of the genome.

Paradigm phage: phi29

Assembly of *cos* or <u>terminal protein</u> phage DNA

CTGAGGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT CTGAGGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT CTGAGGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT

CTGAGGTTACT GGTTACTGTCTATC TTACTGT

GTCTATCGATTC

TCGATTCCTAT

TCCTATCTAT

TATCTATAGGGA

GGGACTCTAGA CTAGATT GATTCACGGT

> GTACTGT ACTGTTACT

CTGAGGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT

- Each DNA molecule packaged into the phage head is identical
- In theory, the assembly should reflect the original DNA molecule

Assembly of *pac* phage DNA

CTGAGGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT CTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACTCTGAGGTTA GATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACTCTGAGGTTACTGTCTATC

PACTCTGAGGTTA
CTGAGGTTACT
GGTTACTGTCTATC
TTACTGT

GTCTATCGATTC

TCGATTCCTAT

TCCTATCTAT

TATCTATAGGGA

GGGACTCTAGA
CTAGATT
GATTCACGGT

GTACTGT ACTGTTACT TTACTCTG

PACTCTGAGGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACTCTG

Sequence from one end matches the other end ("circular assembly")

Assembly of <u>DTR</u> phage DNA

GTACTGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT GTACTGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT GTACTGTTACTGTCTATCGATTCCTATCTATAGGGACTCTAGATTCACGGTACTGTTACT

```
TCTATAGGGACT
GACTCTAGAT
GATTCACGGTA
TCACGGTACTG
ACTGTTACT
TACTGTTAC
GTACTGTT
CTGTTACT
ACTGTTA
TTACTGTTA
TTACTGTTA
TTACTGTTA
CTGTTACT
CTGTCTATCGA
CGATTCCTATCGA
TATCTATAGGGA
```

High coverage region

Sequence from one end matches the other end ("circular assembly")

PhageTerm

- PhageTerm attempts to detect genomic termini type and location by mapping Illumina sequence reads back to the assembled contig
- Uses two algorithms
 - Coverage discontinuity: DTR regions have higher coverage
 - Read ends: physical ends in phage DNA lead to overrepresentation of these ends in the read pool
- Requires the phage sequence and the original reads
- Illumina library prep method affects results:
 Nextera tends to lose genome ends

Assembly of <u>DTR</u> phage DNA

4s-2 PhageTerm Analysis

High coverage region

Sequence from one end matches the other end ("circular assembly")

Using PhageTerm to reopen phage contigs

- Phages with cos or DTR termini are conventionally opened at the physical termini as present in the packaged phage chromosome
 - Cos: opened at cos sites
 - DTR: opened at the DTR boundary
- Reopening the phage genome before annotation simplifies downstream analyses
- If detected, phage contigs should be reopened at cos or DTR boundaries

Structural Annotation

Genome annotation

Genome annotation

Eukaryotic gene

- Extensive mRNA processing for intron splicing, 5' and 3' modification
- Difficult to infer protein sequence directly from DNA sequence

Prokaryotic gene

- Introns rare, little mRNA processing
- Easy to infer protein sequence directly from DNA sequence

Gene prediction tools

- Gene prediction tools are generally accurate
- Above: gene prediction on the leftmost 19 kb of the lambda genome by MGA identifies all of the protein-coding sequences from Nu1 - J
- Note that prediction tools are looking for "normal" protein-coding genes; cannot find programmed frameshifts or embedded genes

Gene prediction tools

- MGA identifies S, R and Rz of the lambda lysis cassette but does not find Rz1, embedded in Rz
 - To MGA, there is no evidence that Rz1 should be called as a gene
- The Rz1 reading frame is found by Sixpack, but if you were annotating this phage de novo you would have no reason to call it at this time
- The evidence for annotating "unusual" protein-coding genes found in phage genomes will come later in separate analyses

Gene prediction and translation initiation

- All protein-coding genes must be translated into protein from an mRNA, which requires initiation
- A Translation Initiation Site (TIR) consists of a Shine-Dalgarno (S-D) sequence, a 4-12 bp spacer, and a start codon
 - The S-D sequence must base-pair with the complementary sequence at the 3' end of the 16S rRNA to initiate translation of a protein
- The strength of translation initiation is affected by how close a gene's RBS is to the consensus S-D sequence AGGAGGT, and if the spacer is the right length
- Any 3-base subset of the canonical S-D can be used in a TIR
 - Must have appropriate spacing
 - Wobble base-pairing rules apply

Shine Find

- The CPT developed the tool ShineFind to help with structural annotation
- The tool looks upstream of each ORF called by MGA, Glimmer3 or SixPack and identifies the S-D sequence, and makes this a part of the gene feature

Valid Shine-Dalgarno sequences	
Watson-Crick	Wobble (G-U)
AGGAGGT	AGGAGGT
AGGAGG	GGGGG
GGAGGT	GGGGGT
AGGAG	AGGGG
GGAGG	GGGGG
GAGGT	GGGGT
AGGA	GGGA
GGAG	GGGG
GAGG	GGGT
AGGT	GGG
AGG	
GGA	
GAG	
GGT	

Basic gene structure

- A protein-coding gene must:
 - Have a valid start codon: ATG > GTG >> TTG
 - Encode a protein in an open reading frame (ORF)
 determined by the start codon (also called the coding segment, or CDS)
 - Be terminated by a stop codon
- A protein-coding gene should:
 - Be preceded by a Shine-Dalgarno sequence

AGT**AGGT**ACCTGATT**ATG**CAGCATGTG...TCGGAT**TAA**GCTT

M R H V S D *

The CPT Galaxy Structural Annotation workflow

The CPT Galaxy Structural Annotation workflow

Find all ORFs

Format output

Remove all **ORFs** without ATG, GTG or TTG starts

Detect S-D sequences upstream of **ORFs**

Format output

The CPT Galaxy Structural Annotation workflow

The CPT Galaxy Structural Annotation workflow

outputs to Jbrowse for use in Apollo

Coding density and organization

Density

- Most phages have coding densities of >90%
- Most of the DNA contains some kind of feature: protein coding gene, tRNA, terminator, regulatory element, etc.
- These features are tightly packed and may even overlap if biologically possible

Transcriptional units

- Phage genes are translated from polycistronic mRNA's
- Genes tend to be arranged in groups on the plus or minus strand

General gene finding rules for phage

- Phages have high coding density
 - Genes tend to have minimal gaps between them or overlap slightly (up to ~5-8 aa)
 - Genes should never be embedded in each other on opposite strands
- Genes tend to be arranged into transcriptional units: blocks of genes on one strand or the other
- Start codons: ATG > GTG >> TTG
- Have recognizable TIR's, but only a few will have the full consensus S-D sequence AGGAGGT
- Most genes will encode proteins > 30 aa
- Sometimes there is no good-looking gene for a given DNA region and that is
 OK
 - There may be a regulatory element or some other function for that sequence

Calling genes from evidence tracks

- The programs

 MetaGeneAnnotator (MGA)

 and Glimmer3 will detect

 most protein-coding genes
 - Use the outputs from these tools first before resorting to the naïve ORF caller (Sixpack)
- We use our own tool, Shine Find, to automatically detect S-D sequences upstream of predicted genes as a means of quality control
- The vast majority of "real" genes will have a valid Shine-Dalgarno sequence associated with them

Functional annotation: BLAST, Conserved Domains, and Annotations

Genome annotation

Determining gene function

- Most functional prediction is conducted on protein sequence
 - DNA sequence similarity degenerates rapidly
 - Amino acid sequences are more constrained by the needs of maintaining protein function
- The CPT Galaxy Functional Workflow uses BLASTp and InterProScan for main annotation uses

BLASTp

- The CPT Galaxy Functional Workflow uses BLASTp against four databases
 - Canonical phage: Curated RefSeq records of well-studied phages (T4, T5, T7, lambda, N4, etc.)
 - SwissProt: The curated EMBL SwissProt database
 - TrEMBL: The total EMBL protein database
 - nr: The NCBI nr protein database, uncurated

Partial protein similarity can lead to misleading results

- Two different proteins can share a region of similarity if they share a functional domain
- E.g., both proteins may hydrolyze ATP but otherwise have different functions
- BLAST similarity or E-value can be misleading if a there is a good match over part of a protein
- Alignment of the BLASTp result to the gene in Apollo shows partial matches

GENE30

Conserved domains: InterProScan

- MobiDB
- InterPro is hosted by EMBL-EBI and integrated into UniProt

 InterPro integrates multiple conserved domain databases and assigns a single InterPro ID to related domains

 InterProScan is the tool that searches a protein sequence against the member databases and detects similarity to conserved domains

• Online tool only allows searching a single sequence

prosite

 All UniProt records are automatically processed through InterProScan and InterPro domains are part of the protein record

Functional workflow output

- The functional workflow runs many different analyses
- We will review these further in the hands-on session
- We will look at the most powerful general analyses, BLASTp and InterProScan

BLAST results in Apollo

- Like other evidence tracks, BLAST results will be aligned under each gene
- The **length** of the alignment is visualized by the length of the bar below the gene
 - Note that if the subject sequence is longer than your gene, it will be truncated so it doesn't overlap other genes
- The E value of the match is roughly visualized by the intensity of the color
- Hovering over a bar will preview the match info

BLAST hit information

- E-value: lower is better, also reflected in shading of the feature in the track
- Description: may be informative, depends on the quality of the annotation in the protein record used to make the database
- The accession number (underlined) can be used to find the protein record in the database

InterProScan results in Apollo

- InterProScan searches for conserved domains in member databases
- These hits predict protein function based on conserved domains, beware of domain swapping!

Specialty analyses

Lysis genes Introns Frameshifts

Holin accumulates in IM, mobile and harmless

Endolysin accumulates in cytoplasm, fully active

At a the programmed time, holin **triggers** to form massive <u>"holes"</u> (average 350 nm for lambda)

Endolysin escapes through holes & attacks peptidoglycan

Spanin complex

- After holin triggering, endolysin is released to degrade peptidoglycan
- In Gram –ve hosts, a third component, the spanin complex, disrupts the outer membrane
- The canonical spanin is 2 components: an inner membrane protein with an N-terminal TMD, and an outer membrane lipoprotein tethered to the inner leaflet of the OM by a lipid anchor

Lysis genes

- Lysis genes are often found co-localized in lysis cassettes
 - Endolysin: conserved domains or BLAST homology
 - Holins: small, 1 or more TMD's **Embedded genes not** • Spanins: Adjacent, partially or fully embedded found in normal i-spanin: 1 N-terminal TMD structural annotation! o-spanin: 1 N-terminal lipobox Fully embedded **Endolysin** Holin 0 Partial embedded **Endolysin** Holin Separate **Endolysin** Holin Unimolecular **Endolysin** Holin N-terminal lipobox, C-terminal TMD

Lysis cassettes

Gene order is not always conserved within the lysis cassette

Etc., etc.

Distributed lysis genes

- Lysis genes are not always in discrete cassettes
- Prevalent in larger genomes like T4

Holin finding

- Small, TMD-containing proteins
- Look for holins first next to the endolysin gene
- Must have 1 or more TMDs
- May have homology to another holin by BLAST but this is not common

Holin finding

Display tracks for TMHMM

- TMHMM: number and location of predicted TMD's
- Membrane: actual scores from TMHMM plotted to genome
- Inside: Probability this region is in the cytoplasm
- Outside: Probability this region is in the periplasm/extracellular
- Most likely location is adjacent to the endolysin
 - If no holin candidate near endolysin, lysis genes may be distributed
 - Probably will not be identifiable unless there is only one small TMD-containing protein in the whole genome (unlikely), or BLAST homology to a known holin (also unlikely)

Spanin finding

- Candidates from BLAST
 - Low sequence conservation in spanins
- Candidate ISPs (i-spanin)
 - Naive ORF calls analyzed by TMHMM
- Candidate OSPs (o-spanin)
 - Naive ORF calls analyzed for Nterminal lipobox signals

Spanin finding

- Likely spanin gene pairs
 - 1 protein with N-terminal TMD (top)
 - 1 protein with N-terminal lipobox (bottom)
 - Adjacent or o-spanin embedded in i-spanin
 - i-spanin is never embedded in o-spanin
- OSP tool conducts naive ORF calls, should find embedded genes not found during structural annotation

Spanin finding

- Likely candidate spanin pair, adjacent non-embedded genes
- At least one of the genes was found during structural annotation
- Candidate ISP has 1 N-terminal TMD
- Candidate OSP has SPII signal and is immediately downstream of ISP

Introns

- An intron is an extra section of DNA that interrupts the protein-coding sequence of a gene
- This sequence has ribozyme activity and splices itself out of the mRNA, leaving an intact message and a free intron RNA
- Introns often (but not always) contain a homing endonuclease gene
- These are often found in essential genes, and often in genes involved in DNA metabolism

Introns are self-splicing elements

Introns

- Two or more genes that BLAST to the same protein could indicate an intron
- You can look at the BLAST results: do the two genes in your genome align to different portions of the same protein?

Intron finding track

- Will highlight genes that may have been disrupted by introns
 - Difficult to check all BLAST hits manually
- Searches BLAST results for nearby genes that BLAST to the same proteins
- Only works if the introndisrupted gene has nondisrupted homologs in the database

Intron finding

- Searches BLAST results for nearby genes that match to the same protein
- Will highlight possible genes that have been disrupted by introns
- May have a CDS within the intron, or not
- CDS may have a HNH or GIY-YIG domain, or not

Submitting to GenBank

- GenBank submissions are handled through the BankIt website so the genome must be exported from Galaxy/Apollo
- Final genome is retrieved into Galaxy, converted to GenBank (.gbk) format and renumbered to add the /locus_tag features
- Final proofing and conversion to 5-column table handled by Sanger Artemis
 - https://www.sanger.ac.uk/science/tools/artemis
 - Artemis handles all GenBank feature keys and reads GenBank formatted files directly

Comparative genomics

- Placing your phage into the general context of other known phages
- Proposing a phage genus or species if possible
- Most related phage
 - Highest similarity among all organisms in the nr database
- Most related type phage
 - Highest similarity to a known phage type

Comparative genomics

- The outputs of a comparative workflow will appear in Galaxy
 - The workflow will analyze BLASTp and BLASTn results against nr and nt and present the top five results
 - Will then run a dotplot comparison on DNA sequences

Nucleotide percent identity table

Global DNA:DNA identity, listed by GenBank accession

MIST dotplot

Low-resolution alignment of DNA sequence

Top BLASTp hits

 Provides accession, name, and number of matching proteins at E < 0.001

Comparative genomics workflow (protein)

Comparative genomics workflow (DNA)

Phage comparative genomics (v1.5)

Phage comparative genomics (v1.5)

- Inputs
 - BLASTp output should be labeled "NR"
 - BLASTn output should be labeled "NT" (may have to unhide)
 - Phage DNA sequence should be labeled "Sequences from Apollo"

Top BLASTn hits

1	2	3	4
# ID	Name	Score	Nucleotide Hits
GU580940.1	Rhodococcus phage ReqiDocB7, complete genome	0.051	9
KR063279.1	Gordonia phage GMA3, complete genome	0.029	10
KX557281.1	Gordonia phage Jumbo, complete genome	0.028	9
KU998254.1	Gordonia phage Kampe, complete genome	0.024	6
KU998253.1	Gordonia phage Orchid, complete genome	0.024	6

Accession numbers of top hit genomes

Names of top hit genomes

Score: metric used for sorting genomes by relatedness

Number of HSPs matching your genome

Only these values are relevant to you

Top BLASTp hits

1	2	3	4
# ID	Name	Score	Similar Unique Proteins
KU998252.1	Gordonia phage PatrickStar	12.066	34
KU998254.1	Gordonia phage Kampe	12.066	34
KU998253.1	Gordonia phage Orchid	12.066	34
KP790010.1	Gordonia phage GordDuk1	11.030	33
KX557281.1	Gordonia phage Jumbo	10.837	33

Accession numbers of top hit genomes

Names of top hit genomes

Number of proteins that have homologs in your phage, E > 0.001

Only these values are relevant to you

Percent nucleotide identity table

1	2	3	4	5	6	7
	Mushu2_2018	KX557281.1	KU998254.1	KU998253.1	KR063279.1	GU580940.1
Mushu2_2018	100.00	7.09	3.00	3.00	6.28	11.16
KX557281.1	7.09	100.00	5.11	5.11	23.20	4.87
KU998254.1	3.00	5.11	100.00	99.98	7.02	3.40
KU998253.1	3.00	5.11	99.98	100.00	7.01	3.40
KR063279.1	6.28	23.20	7.02	7.01	100.00	5.00
GU580940.1	11.16	4.87	3.40	3.40	5.00	100.00

Accession numbers of top hit genomes

Pairwise % nucleotide identity by the **Dice coefficient**

Dice =
$$\frac{2 \text{ x (# identical bases)}}{(\text{length of seq 1) + (length of seq 2)}}$$

Dotplot comparisons

- A dotplot is a simple way to visualize the similarity between two sequences
- Lays out two sequences along X and Y axes and compares them in sliding "windows" and draws a dot if the 2 windows match above a threshold
- Can visualize gross similarity, synteny and major genome rearrangements

Dotplot comparisons

- Dotplots are "low resolution" comparisons
- Window sizes are usually >20 bp, so individual SNPs or indels are not visible
- As sequence similarity degrades, plot line becomes patchy or disappears

Galaxy training resources

- Galaxy home: https://usegalaxy.org/
- Galaxy 101: https://galaxyproject.org/tutorials/g101/
- CPT Galaxy training: https://cpt.tamu.edu/training-material

Welcome to CPT Galaxy Training

Collection of tutorials for CPT Galaxy users and BICH464 students. Further tutorials developed and maintained by the worldwide Galaxy community are available here.

CPT Galaxy for Students

Topic	Tutorials
Introduction to Galaxy and Apollo	6
Additional Analyses	5
Phage Annotation Pipeline in CPT Galaxy	4

CPT Galaxy for Scientists

Торіс	Tutorials
De Novo Assembly	2